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Abstract— Despite many advances in both computational
intelligence and computational neuroscience, it is clear that we
have yet to achieve the full potential of nature inspired solutions
from studying the human brain. Models of brain function have
reached the stage where large-scale models of the brain have
become possible, yet these tantalising computational structures
cannot yet be applied to real-world problems because they lack
the ability to be connected to real-world inputs or outputs.
This paper introduces the notion of creating a computational
hub that has the potential to link real sensory stimuli to
higher cortical models. This is achieved through modelling
subcortical structures, such as the superior colliculus, which
have desirable computational principles, including rapid, mul-
tisensory and discriminative processing. We demonstrate some
of these subcortical principles in a system that performs real-
time speaker localisation using live video and audio, showing
how such models may help us bridge the computational gap.

I. INTRODUCTION

Despite many advances in both computational intelligence
(CI) and computational neuroscience (CN), it is clear that
we have yet to achieve the full potential of nature inspired
solutions from studying the human brain. As a consequence,
a broader reference point for intelligent behaviour which
encompasses artificial agents is now being advocated [1].
However, before we abandon human intelligence as our ref-
erence, have we fully exploited the available neuroscience?

To understand this question, let us remind ourselves of
the approach adopted by Turing in proposing how to build
an intelligent machine [2]. Turing focused on building an
artificial cortex, which he described as an “unorganised
machine” [2, p6]; a machine which starts in a random state
and becomes organised through learning. In essence, Turing
identified the computational principle of learning in the cor-
tex as a key component of developing intelligent behaviour.
Extracting such principles has become the foundation of CI
and the development of biologically-inspired and plausible
algorithms has reached the stage where large-scale models
of the brain have become possible [3], [4], bringing us closer
to Turing’s original ideal. However, while such large-scale
models are impressive CN tools, they are not connected to
real-world inputs or outputs, yet this is an essential step
if we wish to exploit such models and develop “intelligent
machines”.

Although Turing and contemporary followers of his ideas
were less concerned with “circuits required for quite definite
purposes”, such as controlling respiration or eye move-
ments [2, pl2], focusing on the cortex appears too narrow.
For example, the nervous system of a human is far more
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complex than just the cortex and even non-nervous system
biological processes appear to exhibit cognitive behaviour,
such as the immune system [5]. One potential solution is
to focus on other areas of the nervous system that exhibit
interesting computational properties and which are more
closely associated with sensory inputs and motor control.
Such areas can be found in subcortical sensory processing. To
focus on one example from Turing, saccadic eye movements
are controlled by at least 10 cortical and subcortical regions
of the brain, with the superior colliculus (SC) in the midbrain
playing a pivotal role [6]. Although performing a ‘definite
purpose’, the SC is known to develop becoming mature
in mid gestation [7] and may adapt [8], hence it shows
some interesting computational principles. It is also directly
connected to the optic tract and projects to the brain stem,
and it is therefore many steps closer to real-world inputs
than the cortex. With other similar examples, can focusing
on subcortical areas help us bridge the gap?

In this paper, we attempt to answer this question by
demonstrating how we can extract computational principles
from sensory subcortical structures and demonstrate their
practical application on a simple real-time speaker locali-
sation task (a more intelligent version of eye saccades). This
allows us to show how a CN model can be applied to a real-
world CI problem. Our aim is to demonstrate that there is
still potential left in modelling the nervous system (but not
just the cortex) to inspire adaptive, real-time, neuro-inspired
solutions to problems, and that this potential lies in exploiting
often overlooked structures that directly process inputs and
outputs, as well as mediate with the (still important) cortex.
In section II we present our candidate set of principles. In
section III we describe the nature-inspired method we will
use in the demonstration of these computational principles.
We demonstrate the results from this model and evaluate its
effectiveness in section IV, while we discuss the implications
of this approach in section V.

II. EXTRACTING COMPUTATIONAL PRINCIPLES

Following the example set by Turing on eye movements,
we focus in this paper on subcortical visual processing. This
focus is also overtly motivated by our own previous work on
developing CN models of relevant structures, including the
SC [9] and amygdala [10], which provide a foundation upon
which we can extract computational principles.

Some of the key functional areas in the visual pathway
are shown in Figure 1, together with their afferent cortical
areas. In cognitive psychology, human vision is often referred
to in terms of the retino-geniculate-cortical pathway [11],
placing emphasis on the retina, lateral geniculate nucleus
(LGN) and the visual cortex. In general terms the LGN,



situated in the thalamus, is perceived as routing retinal
stimuli to appropriate areas of the visual cortex. While large-
scale models, such as Izhikevich and Edelman’s [4] use a
model of the visual thalamocortical circuit in their 1,000,000
neuron simulation, take care over how neurons and their
connections are modelled, their view of the LGN and other
subcortical structures appears too simplistic. For example,
the LGN receives input from the retina and forms a layered
topographic map of the whole visual space, which develops
before the animal can open it eyes and hence before it can
match binocular images [12]. Another area in the visual
pathway which is topographic is the SC. This also receives
direct input from the retina, and consists of a series of aligned
topographic maps of the visual, auditory and somatosensory
space, combining these into a multisensory representation to
initiative eye movement [13].
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Fig. 1.  Selected subcortical visual pathways leading to the visual cor-
tex [14], [15]. Retinal neurons connect to the superior colliculus (SC), and
the lateral posterior nucleus (LP) and lateral geniculate nucleus (LGN) in
the thalamus. LP connects to the basolateral amygdala complex (BLA),
which in turn connects to the central amygdaloid nucleus (Ce). The Ce and
SC provide motor output via the pontine reticular nucleus (PnC). Cortical
areas include the primary and secondary visual cortices (V1, V2), temporal
cortical area (TE2) and the perirhinal cortex (PR).

The lateral posterior nucleus (LP) and pulvinar, which are
linked to the LGN, also perform more complex functions
than they are often credited with, such as being orientation
and motion selective [16], properties often associated with
the visual cortex. If we travel further up the visual pathways
to the limbic system, then the amygdala also performs
complex sensory processing to discriminate. For example,
the amygdala has been implicated in the crude processing of
visual emotional stimuli [17]. This crude discrimination is
also adaptive as demonstrated through conditioning [18].

These subcortical structures therefore demonstrate key
properties we normally associate with many different areas
of the brain, and particularly those in the cortex. However,
they also have other key properties associated with their
lower level of operation. First, subcortical sensory processing
occurs rapidly. For example, the SC is implicated in “express
saccades” which can occur in as little as 80ms [6]. Second,
this rapidity may occur because they are more directly
connected to sensory inputs and motor outputs (this is true
not just for vision, but also for olfactory connections to
the amygdala [19]). Third, while some structures operate on

single sensory modalities, such as the LGN, LP, pulvinar for
vision [16] or the inferior colliculus (IC) for audition [20],
key structures are multisensory [21]. Fourth, subcortical
structures appear essential not just for sensory to cortex rout-
ing [22], but also for cortical-to-cortical communication [12],
while they also receive cortical feedback to moderate their
operation [23].

Although we have biased our argument on just a few
of the many subcortical structures, the properties that are
exhibited by just these are sufficiently interesting to warrant
exploitation. To summarise these principles, our selected sub-
cortical structures develop representations through processes
such as self-organisation, adapt such as with conditioning
and cortical feedback, discriminate, albeit on crude stimuli,
are rapid in operation by being closely connected to sensory
inputs and motor outputs, are often multisensory and are
essential for cortical operation and communication.

III. FUNCTIONAL IMPLEMENTATION

To implement the subcortical computational principles we
have identified, we take as inspiration system level models
of the visual and audio pathways [18], [24], and in particular
those modelling the SC [9], [10]. This approach allows us
to modify existing CN models for practical use as we can
select the key aspects we wish to embody through inputs,
architecture and parameters. A systems level model simplifies
the extensive processing undertaken by these structures, yet
allows us to focus on key functionality and properties, par-
ticularly development, discrimination, rapidity resulting from
simple, parallel processing of unisensory stimuli, combining
these into a multisensory representation.

Our architecture is a variation of a model of the SC [9],
which uses Hebbian learning for the development of a
layered, modularised model based on principles defined
by [18]. It comprises three modules each of size 2 by 128
neurons: two modules process the visual and auditory inputs
separately, the output of which is then combined in a third
integration map. The visual input size is 32 by 128 pixels,
while the auditory input is 5 by 100 pixels wide (we use
the term pixels here, even though we are dealing with sound
locations). To train the model we use virtual inputs, prior
to testing it on live video and audio. The activation y of a
neuron at location (4,5) in a map given an m dimensional
input z is given by:
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The weight from an input k£ to a neuron (i,j) on the
map at time step t > 0 is represented by wy;;(t). The
model implements circular winner areas that introduce lateral
inhibition in order to topographically organise during the



training process, similar to Kohonen’s SOM [25]. At each
time step the neuron which produces the maximum activation
Ywin = maz;; f(u;;) on the map is labelled as the winner.
Any neuron, c;;, is considered to fall within the winning
Neuron’s, Cyy, area if its location (4, 7) lies within the current
radius h(t). Training occurs by epochs, each of which is a
random presentation of the full training set. At each epoch
the winning neuron’s area is reduced following a Gaussian
neighbourhood:
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Here t. equals the number of training samples, 7.in, Tmax
representing the minimum and maximum radii for the neigh-
bourhood and r, representing the bandwidth. This results in
a gradual tuning of neurons’ weights to respond to inputs
depending on their location in the input space. The maximum
radius 7,4, is always the larger dimension of a map (7,4, =
128) and the minimum radius was set to 7,,;, = 1. The
bandwidth was set to rs = 100. Each weight is updated
separately and we normalize weights to avoid exponential
growth:
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The learning rate €(t) is constant for each map (e(¢) = 0.001
for the visual map, 0.01 for the auditory map, and 0.0001
for the integration map). Each of the modules is trained for
400 epochs. The parameters used were derived from an in
depth analysis described in [9].

IV. SPEAKER LOCALISATION

The aim of our experiments is to demonstrate that the
model can develop topographic maps with integrative capa-
bilities that result in real-time detection of coincident visual
and auditory stimuli. The context of the experiments is
speaker localisation where higher responses are to be induced
upon coincident detection of a human head and sound. Here
we are not aiming for state-of-the-art speaker localisation,
which can be achieved reliably using specific voice and
head tracking algorithms [26], rather we are attempting to
demonstrate that generic, adaptive solutions can be applied
to such specific problems. A stepwise evaluation approach is
followed and we start by examining the model responses
to virtual stimuli to determine how well the model has
developed. Next we evaluate the model against real-time
visual and auditory inputs from a camera and a microphone.

Video and audio data for the experiments were captured
using a Java implementation of the model'. This was run
on a Dell Latitude D630 laptop with an Intel Core 2 Duo
T7250 (2.00GHz) processor, 3.5GB of RAM, a Logitech
Live! Cam voice USB camera and two Logitech USB desktop

A Java demonstration of the system will be made available at http: //
www2 .surrey.ac.uk/computing/people/matthew_casey/.

microphones, running Windows XP Professional SP3, Live!
Cam driver version 1.1.2.410, JRE 1.6.0_17, JMF 2.1.1e.
The models were trained and evaluated using Matlab ver-
sion 7.8.0.347. The camera was positioned 0.7m above the
plane of the microphones and 0.54m centrally behind. The
microphones were separated by 1.34m. The heads of the
subjects were 1.66m from the camera. To produce a loud and
sustained sound, a sound source positioned 0.42m from the
microphones. This was a pure tone produced from a laptop
that could be moved independently of the head positions to
allow testing of non-coincident audio and visual stimuli.
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Fig. 2. a) Generic face used to train the visual map and b) the Gaussian
activation pattern used to represent a localized sound used to train the
auditory map.

For the model’s training we use virtual visual and auditory
inputs (Figure 2). Such stimuli ensure consistency amongst
training examples and act as generic templates of the real
stimuli. In particular, for the training of the visual map we
use a generic non-textured head produced by the FaceGen
application [27]. The head is grey scaled, normalised between
0 to 1 and rescaled to 32 by 32 pixels. This size allows com-
putational efficiency while at the same time maintaining the
characteristics of the original virtual head. For the creation
of the visual map training data, we place the virtual head
at consecutive locations within a 32 by 128 visual space.
This results in 96 visual training examples. The hypothetical
visual space and examples represent a stripe of a visual scene
within which a head is moving across from one end to the
other.

The training data for the auditory map are Gaussian
activation patterns that represent the location (and not the
type) of a sound within the defined auditory space. We define
the location of a sound as a 5 by 5 grid with the Gaussian
pattern centred at (¢, d):

i—c)? i—d)?
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where A = 1 for the amplitude and ¢ = 4 for the
bandwidth. Since we have 96 visual examples we need the
same number of auditory inputs so that we can achieve a
one to one correspondence (a head and a sound at the same
location). Therefore, we place 96 consecutive examples of
sound locations in a similar manner to the visual inputs
resulting in the 5 by 100 auditory space.



A. Model Responses to Virtual Visual and Auditory Stimuli

The aim of this experiment is to demonstrate the key
properties of the model. Each of the unisensory maps is
trained using the 96 virtual samples described above. After
the maps have finished training, their outputs were presented
with coincident audio-visual samples in order to train the in-
tegration map. Figure 3 illustrates that the trained unisensory
maps have learned to develop receptive fields that respond
preferentially thus demonstrating discriminative properties to
certain inputs at particular locations.
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Fig. 3. Weight values of neuron (1,96) on the visual map and neuron
(1,96) on the auditory map. The neuron weights resemble the virtual head
and auditory location inputs that they are trained on.

To evaluate the model development of topographic maps
we tested it with a visual input that consisted of two virtual
heads at either end of the input (combining example 1 and
96), while the auditory input is a moving virtual sound from
left to right within the auditory space (all 96 locations).
Since the location of the sound changes, there will be only
two auditory locations which are fully coincident with visual
(head) locations. By observing the visual map activation for
example 8 and 88 (Figure 4a, b) it is clear that the location
of the heads activate the edges of the map since they are on
the edges of the visual space. However, the sound location
in trial example 8 is towards the centre of the auditory space
whilst example 88 towards its end. This results in different
areas of the auditory map being activated (Figure 4a, b)
which in turn affects the activation strength of the integration
map. Figure 4c shows that the integration map is highly
responsive on its edges and this is attributed to the auditory
stimulus being coincident with the visual stimuli towards the
start and end of its movement within the auditory space.
This demonstrates multisensory enhancement on coincident,
multimodal stimuli, which is a well-studied property of the
SC [14].

B. Model Responses to Real Visual and Virtual Auditory
Stimuli

Having established the functionality of the model on
artificial data we now evaluate it on video images and virtual
moving sound. The image examples here depict two heads
near the edges of the visual space. The images themselves
have been extracted from a video sequence of two non-
moving people. Therefore the only difference to the previous
trial is the substitution of the virtual with real faces. As seen
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Fig. 4. Model responses to virtual stimuli: a) and b) show the the visual
and auditory inputs, visual and auditory map activations, and integration map
activation for example inputs 48 and 88; ¢) shows maximum activations of
the integration map for all 96 inputs.

in Figure 5a the visual map shows that it is still activated
near its edges. Crucially, we also observe that the profile
of activations in Figure 5b is similar to that of Figure 4c.
This means that the model can successfully generalise its
behaviour when given real visual data.

C. Model Responses to Real Visual and Auditory Stimuli

For our final experiment we present the model with both
real visual and audio data and demonstrate its real-time
deployment. For this trial we have used a single non-moving
person on the right side of the visual space that activates



a) Responses for Example 8
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Fig. 5. Model responses to real non moving head stimuli and virtual moving
sound: a) shows the the visual and auditory inputs, visual and auditory map
activations, and integration map activation for example input 8; b) shows
maximum activations of the integration map for all 96 inputs.

a sound in front of them for a duration of 10 seconds. The
sound is a pure tone (16 bit, 800Hz). This is used, rather than
talking, to provide a consistent and sufficiently loud sound
for the microphones to capture. Although an appropriate
localisation is given in response to talking, because of the
low volume and reverberation in the room, the location varies
with every frame unless noise is minimised. The pure tone
was therefore used to provide consistency and to allow the
sound to vary to different locations to that of the heads. The
325 examples used in this trial correspond to 13 seconds at
25 frames per second audio and video, with the sound played
approximately after 2 seconds from the trial initialisation.

Sound localisation in mammals is achieved using both
ILD and ITD, with the IC being the pivotal subcortical
structure having a topographic representation of sound. For
eye movement via the SC, ILD is used predominantly for
azimuth localisation [20], which is our chosen task. We
therefore use a simplified version of an ILD algorithm [28]
which allows us to localise using two microphones. Here,
the sound intensity for each microphone is calculated from
a sample buffer of sound pressures. The intensity from each
microphone is then used to describe the centre and radius of
a circle which represents the possible locations of the sound
given the relative position of the two microphones. With only
two microphones it is not possible to localise any further
than this circle without assumptions about the possible sound
source locations. Here, we assume that the sound location

falls at the point on the circle which is closest to the centre
point between the two microphones.

Figure 6a shows the results for example input 100. We
observed that all activation values above 0.22 correspond
to coincident detections. On the other hand, non-coincident
examples (such as example 300 illustrated in Figure 6b) have
a lower activation in the integration map. We can therefore
use this value to discriminate speakers as it corresponds to
an activation of coincident head and sound localisation.
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Fig. 6. Model responses to real visual and audio stimuli: a) and b) show

the the visual and auditory inputs, visual and auditory map activations,
and integration map activation for example inputs 100 and 300; c) shows
maximum activations of the integration map for all 96 inputs.



V. CONCLUSIONS

In this paper we have demonstrated how CN models
of subcortical processing may be used to inspire CI solu-
tions. We focused on key subcortical structures because they
directly process sensory input and produce motor output,
offering us insight into how more complex cortical models
might be connected to the real-world. Although we focused
on only a small number of subcortical structures, including
the SC and amygdala, and ignored others, such as the
hippocampus, we identified seven computational principles
that we wish to emulate: development, adaptation, discrim-
ination, rapid operation, sensory input and motor output
connectivity, multisensory integration and communication. At
least the first three are shared with cortical structures, yet
in terms of real-world operation, rapid processing of crude
multisensory stimuli appears key to our aim of demonstrating
the potential for inspiring novel and relevant solutions to
real-world problems. However, we recognise that this intu-
itive “reasoning by metaphor” [29] approach of extracting
principles is not ideal, and we should be following a more
analytic approach to understand the computational properties
of these structures. Nonetheless, this is enough to initiate
bridging the computational gap of higher cortical simulations
and real sensory input.

To demonstrate the potential of subcortical approaches to
CI, we selected the real-time task of speaker localisation.
Here, we adapted a system level model of the SC to
localise heads and sound sources. Through evaluating this
on both virtual and real data, we demonstrated that the
model develops topographic representations, discriminating
and combining multisensory stimuli, all in real-time. Al-
though this demonstrator is not as capable as state-of-the-art
implementations of speaker localisation, it does demonstrate
how CN models may be applied to CI problems.
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